Go to homepage
3 / 15
Oct 2015

We are about to embark on a project to bring 3D models of molecules like proteins and DNA into science learning. Most of the objects that I have seen are single color from filament printers. Ok but much less powerful for learning than a multi-color model.

![](data:<;base64,/9j/4AAQSkZJRgABAQAAAQABAAD//gA7Q1JFQVRPUjogZ2QtanBlZyB2MS4wICh1c2luZyBJSkcgSlBFRyB2NjIpLCBxdWFsaXR5ID0gOTAK/9sAQwADAgIDAgIDAwMDBAMDBAUIBQUEBAUKBwcGCAwKDAwLCgsLDQ4SEA0OEQ4LCxAWEBETFBUVFQwPFxgWFBgSFBUU/9sAQwEDBAQFBAUJBQUJFA0LDRQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU/8AAEQgAyAEsAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A/RNelOFMBxzSg4oAk9KSTtSg5pwoAjHWngZzUgpc4oAav5U/FJnkUozmgBc+tFFPFAABUi00GnZoAeOtPSmA09TnFAD6UUh4ozQBat5cDFJP61XDYp+/IoAglFV3HNWZOKgc80AREU2pM0hPFADKCfWg0hPHHWgBMcU1utPzikBoAiI4pp6VPmk65oArmnR8j8alNNOaAG9DRijOBSA80APSPNSLCMnIBNEYxzTgTQBNuwoHQYpCabnNITQAucUhz7UhakzQBQB4oU0wHilDVNwJlapFPNQA1IGqgJQaUmmBqdn0oAcDSg00GlDc0APzTgaZmlBoAeDS5/CminDpQA5M55OalDVD9KdnK5oAmL5xSZrPk17TYL9bKS/tY7x/u27TKJD9FzmrwNNprcVx6mgtg8Gmg4pCc0hgzZqFutONNY5oATPNNJopCf0oAM0hNGaz73X9O06cQXN3HFMRkIzc/jVKLlolcmUox1k7F/IFIaakiyoGRgytyGU5BFKc5xUlBmg0meeaQtzQApNMJoLUwtQAFqEOTTTn1pyA0ATqaeD+dRZpyHJoAmJpuaCaZnjvQApNGc0zdzRn1P6UAURx9KQHmk7UgPQ1BRKpxTwaiBpwNO5JMrU8GoQacD3qgJc05Tiow3FLuxQBKDTgajDcUoNAEgNODc+1Rbqq6xq0OiaTeX9wcQ20TTOfZRn+lNK+iDY0MisTxzrcvhzwXr2qwMiz2djNPEZPu71Qlc/iBXx9qf7ZfiVNQN4kaWUMkxSGwlg+6g7tnknp0rg9b/aE8Q/FC9u7HXryX+zSxiFmP3MRAPUqMbvXn2r7HDcMYypOPO4pPXe/yseLVzSjGL5U2zP8L+JX1uOa6vb97rUpHMzuzHzGOeSCc85r6l/Ze+MepeM9Q1Hw7qs5u5bO3W4hnkOZNuQpB/MGvkHxt4Vm1LS4YtBfT4LqAb404TcP94DnPvWh8G9T8T/CLUB4i+1WonSMiaESNIrpnJQ4AGCT2PWvq87wVXF0lQpU7tbPovmeXgq8KMueUtD9Ns0hPrXyp4U/au16S4WTUrexvbeTloolMTp1yAdxHbvX0v4a8R2XizQ7PVtPcyWl0m9CwwRzggjsQQQfcV+bY3LcTgLe3Wj2aPpKGJp4i/IaLtTCakwOaFjVjivLOohd1RS7sERQSzE4AA7muJtvija6tcSJp/l/ZwcLNKDuf3A7VvfEW2km8A+IobSZLa7ksJ0hlkbCq5Qhcntzivkj9n+x8Raz4cN9fMYDEzDy2+9lGIP8jXo4OnGTbkrniZlXqUko03Y+tT4gf7FJKsPnSKvABwM14vN4ge21mWXUiBcySliQOCOvftWjpPxLW0MlndxtHPv27nbg+tcX8ZtatHsIrq3lEVwCQrBsZr07Uoxc6aPnZV6tRqNR3semeDfHO8vp4lxGDviIwQvqPpn+dekW2qxyQIJWAkxzjofcV8z/AAL07WReTatqURS3kh2xLJ/GM5/mK7fXfipDol8BJGixjIK5Iwe/NZOnTqQTqK3mjeGLrUZ+49Oz1PaYpkmBKOGx1x2+tKxx1rxGP4v6fKUYTKhBGXJwAD7122hfEjT7u9tLM3aSxTtsVi+SpPTHtXn1cPCN3Tlex7eGzF1Wo1I2v1O4Vdxp3kE9qniiCgEEMDyD61JkDtXAe2Vlt/UVIIgoxUhamluKAImShRinMwphOKAFJpC2aaxppNAC5oLVGWo3UAVAcikBpBTQagslBpwbiow1OBoESg04NzUQbNOBzTESg4pc9qjDU7dgU7iHg4604PVS4vILUAzzRwgnAMjBc/nXI+JPjB4Z8K6kLC+vwLnALKg3bQfWtadOdWXLTi2/JXJlJRV5Ox1+q6zZaFptxf6hdRWdlboXlnmbaqKO5NfFv7QPxym+JFzbxaJdT2mhWe5lQ7l+1P2dh6DHAPue9aX7dvxq0y7+Dtnp3h/UvtN7d30dxLBD/FBGCW3D/eKED/Z9q+Jrj9oC2k0N7dpTNLtAVmXcQPxYgemMDt+P2WR0cPhp/WMUnzfZTWnr5/oeTjJyqr2dN6dT2GP4pWCahDHuVmaTDLkYb1A4znpg46noMYrxT4i/FCeHxyTpwaG4Mnl+WhJbk8YHHPNVPC09hcXces3d8VmaQOsQY8cg8np0r0Lxdqfgy41e31axs7W6uItrm73swU+oBJA4xz719rCrWxEGqclHXr28jyJwp05Jyjc3bKw8QaR4XM7StJcTRgeRGcnOc4z1weent61y0H7Q8mhQT2VzHsu42O+MIRKD3BPfpjn16V11j8WLK407Z50cZK5yGG5efb3+nb1r5d163RPFviGaSdpLZi00bvyeSHx+HSsM0zGWHgvYO99H/mTh8MpNuaPUbD493Mc80EcEsMsshMSeXktu7KMYr9Uv2UbfWLf4E+G/7dha31CVZZzE/wB5VeRmXd74Ir8WdF8W3g1WC8jTCxjbH7H1r9Vf2B/ifrPjjwHqFhqkjXMelOkcU7HOMgnZnvivg8yxU8ZQUnK/K9rWPcwsI0ptWtdH1furJ8Ua8PDmiXF8QT5YAH1JxV7zK8w+Ovit/Dmg2kkiFrGSbbO2MhfTNfNQSclc7q8nClKUd7HG/tGePNRX4QTS2s22Oe4jjuXXqkZyc+w3BR+NfJvwz/aA1Dw9fQ6OJGeDAVipx8nbP4V6N4x8e6r4pgudE8PWEmtrcxlZLWFd/wAh659BXjvgfRtP8LXOtjVopLDU4FK/Zp1G+Nhnj19K9T20ZLkpaHy3JOUeavd+Z9feEr/QPF+ow3axYdVAUSPuBfvx9e3vXlnxu/Zp8YfFDxiJ/DniaDTNNt0XNnK7hlbJ3MAvB6Dqeor5q8HfHa/8Ia1Orys1uJS6EE/Lzmvb/AX7YFjZapNd30zLERh3ZiN2Tz1re1OcPZtW9DncZ03zrVn0j4Tt734ceHLCy1i4+3XcUEcbXXTzWAAJx2zXP/FrQ9J8aeGZRHdQabqExws8BBdcHPzA9j0z1qrB8YvDfxBt/trXSPZsp8oqRgn1ryiGyu/HXxPg0bT9RaDTmJe5mU52oD0XnGT0FbV5RjCNFK9zGhBuTqy0PLfGdrqPw812+0jXZdWnYWm7TpbJVEcsxxgsxzlAOoHPI6V6l+zlput3mrafrGrXkkUMI3RQyHn0/rX0z4j8NaJJFZzXEcUkkYAHAO0dP5fyqCLwdoVwESJ1h28l04LZPoK4XRqwlrZnR7WnJe7oekfD7WE1TRZFSUzC3maMMeu3qP54/CunJry7w1HN4HmaG3VprK5PmElchSB+legaZq8OqQB42UP/ABJnkVx1qM4Pma0Z9Hg8VTqxVO+qRfLU0tSMaYWGK5T0xS350me9M3ZpC2aAHE00mkJ4puaAEJ96TcPWmE80mam4yAHio+uPWlzTAaRRKD0pymogacDQBMGpQ1RA04N70ASg4HNcD8YvjBp/wj0O1urqMXF3eS+TbW+7buI6kn0GR+dd0Hryb9oz4D2vx78HwaadQfSNVspTPZXyLuEbEYYMuRlSPfsK6KHsvax9t8N9bGVTm5Xybnxh8a/2jNV1DxlFql7eFbaRQkVtExCQrz0GfXqTVG8+IF4fBl3rtyio7RbofOfMjg8A4P41g/tN/sh+Ifgt8P7TxXf+JU8RJFdrDc29vbMgjU52tuJPcYPHpXmmh+JU1zSha3Vw01hawowZjnG05AHt7V+qZbmGGlzLDpRjFadz5fE0Z6Kerb1O28eqvinwpp1zqNxNZ3UcL+U0HzA5AwGGOeRnj6V8xR6LNZajA2qwNEvmHG7gsueCR279fSvpHxLPpX/COacon2ljt2buQOvPvzj8Kd4l8FaNceF4DcfZkndA0cqgN8hz2B68fr+NbZpQWKlGcd1a/b7icLJ004vY8s8a6TpE/gWZ9KeZrt9qRLngnPOMDnjP0qz8M9d0vRfCKaTeIvnPnzDIpB3knvnnHb613Pw507T9M0u+0K5I1Gyafz0ULho+MZ65GfrXaav8JtB8W6dFDaQxLBGDja+1skDgMAcEccEc0o4GrD/a4Jaxty9TV1Yy9x7X3PnDxnHLpLNcWF48sL9f4Tk+v4+9WvBttaXmpo+tkvY+SFZQMl8//rrtPHPwHTTLa0ezuVISQmRJZDtZcfw56+uPet3wt8PLPSJrR9RVoYCqo0LA9TyGyefTj6etfLYnD18OqlSdNytqorqdkJQqWipJeZy/g74K2fjL4uaH4atL97LTtUuNkU2zcyLjJ4PXp3r9evgx8JtE+Cnge08OaGHaCIl5Z5TmSZz1Zq+bf2XPhLp3h3XJvEmoG1vZGQDT5mX5oc53Y9DjAr66tbtJUBRww9jXw/1/DY582Fmmuy6Nbq26ttqexGhKhpUVn+hotNwaxNcgtdWtJbS9gjubaQYeKUblIq7LN8p5rD1Cchic8U9zTRGV4d8LaD4NWVdG0y20/wAw5cwoAT9TX5/ftv211oXxPuriw3w/b41neT1bG3A/KvuXxh4pXRLBwki/bJVIhRj3x1PsK/N79p2HWtP1dtRvbia7aQndJKc4zXlVs6wmCxUMJOX7yXTql5jlgauJpOcF7qPmfVbW+Op/apJJGl3BtxJr061OlT6JJNKXllkX5SG+6a4CHxdBvlS/iBTs6Dn8RWxYiGa3Mlsd0Ui5DL0NfS06sKivE+eqwnDSS2Njw/4u1vQrRrK0maWy3FkQSEGPJ6D2r6J/Zx8b6hourtd3DM0kihVUZP4etfK2jW+pTamsdoHZc4xjrX3R+zbYaVo+kJc6pCn2gKCR6H3/ACq4zXNpuclaNo+R6/p8vifxfchpI5bS2mPySSHGQODgVsz+DvFVhKZrO9NxEozjdgtWjo3xZ0KF5RMyiMAlVQ9/asTxZ8ddP+zxLa7YlVfnfON3+P1rolSpuKdSo7+RwRlUu4wgreZZu/ijqnhqT+z763m+0KNpXYTj61u+GNT8RXd5pl/a25MU9wiOA2GjBbksD2IrlvOvbvQ7fxBLBHcRzxrgOAWIx1x+Ir0vwhq+nXuiKGl8lzyABgoR7VlSc6vuuRquWi1K3U9f3U0mszQ9cg1y1MsR+ZG2OPQ/4VoE815kk4uzPsYTU4qUdmKTQTSE03dUlik0zNBNNzSAQmmk+9GaTNIor561GDS561GDQMlBpwPpUQNODc0AS5pciog1BagCQtUbyYprSYFVZpsZoA8f/aT+IWg6b4K1fw3fJFf3+o2boLRwGVVYYDt6Y6j6V+ZDQaH4W0G40U3DSX8zExyr90HPC/SvfP2vr7xV4d+OWoztZztpWoJELacIWjKhACAfUEHIryXR/hlpvia/uY5LuRr24T5VX/lmD1598f5zX6DlOFw6w6nT96ck73dkrr9D5zFVJyqWlolt5njUVxq/i23Y2lw9z5DlFTJxkYyPyxXafDTT7zW7uSw1i9e2SIFdshPPXv8A09qwdO8G6n4W1O80yyZ7lYpTMSPlJYgDH6VaN3fHUgkm6zfjdhgcg9eRSpSlBp1m77MJW+zsZXhzxU3h/wAYXtnNK3kW07Kpc53IGOPT/OK95sfjRpyxQpHKsb8Bo1PD/Q+uOa8F+JPgy7TytXslM6EBXeJBnPqcf1rD8H+HtXvtYtlmSaCIsM5G1iOOmfatcPj8RhJ/V2ru+hU6UKkee56943+JV5/a8FtYSJc7nMibeAOBkEjHSu68AeJbbxmxk1ecC6TnyAp2ucY59O1WT8EbOO0jurefEjweV5iLlo2weeffFFl8J4fDMF1dWVzHZzsIzHGWdvmVQC2WJOWbLHtknAAAFfS4eli41VKvG8Gnfy8vmcM3TcbQep9HfC7xKPD00Wj6hC8WmuoMbE7Chzxn2z6171F4hs7G1aWGSQsvPmbiQPTk1+a3/C65fDLz2GoyxGTG1kkBGP8A6/PBH619I/BP4str3w3exvlYmQOkE4becEZX34GPwr+b/Ebw4/trESzjhqXLV3nTircz/njbaT6rrve9z7XI87+qQWGx+seku3k/Lt9x9T6F8S7W9sLp7mVGMGPmU9cnGP1FY2reI5PEMM0ltcCKKIMCoPJ4614H8J4TeeC9e0PWtR+x6/csJLS7H+rbZkhM9OTnrjOfaur+CvhXXdTN9beILryI4nIVIW+aQHnJPYV8bmWTcY1MJhsujfWPvN3jK938Unroreb1Wp6kcblFKpUxDlonot/uXqcDBf8Aivxr42igsi11DZSPFOXyREoGVJx61zHx0+Gev+LtJe1kgBhV8eYBz+FfXtn4S0vwTpd02mQCOaVvMlJO5pH9WNcfY+LrPWrxraaJBIpI6DNepQ4FlHE0sVia/wC8ileyvquvM9X9x49Til8k6WHp+5fS/b0PzU1j9kvXpkWS2u4oWJ+ZbkFR+GP8K9O0L9n7/hEdLtLIOL+UJ874xubqcDsK+xPid4csYvDt7em3acxRGRViGHOAeB+lfOnwb8b654u13VLe40mYf2fty2OzZwD74HavvqMJULUnK7XfqfO1sRKvHmtp5HNzfCLUPC0kl+9isagZ5Ocmtnwn4N8Q61ZyS6Xc7Y5s4jJ4z7HIr1L4k3L/ABH8H6n4WswBqc9u6xo2V2Ng4J9BnFebfsoeFPHXhHS9Ug8U2E9pp1lMIrb7RwSed+PVQcYPufSumM5zm6WzOaSh7NVL6Gr8MfhJ4p8T395DfTzRRo2N8eME/jXaR/sxXo1LN9fzzWyOrCJps7gDz096908K+KdF0yzjWLyllcncOhz65966aTUdKO65eVHkOQBu4A9q9WOEUoLmld9ThddxbSjY+ef2jfGmrfAr4WWr6Za/2mZJEt4VlU4hYgnLYPTCnvXnv7PH7QDeJ7S5fxBKlncJId0CEhfUEA816r8a/BniX486bc+GfCT2zqksctxcXMvlrEobI24ByeOnpmsW/wD+CdL/APCLadJo/ikWPioD/TpJFJtZc9lwNwI9ec+grnqSjSlaL2PRo4adekm0e6fArx9aeI/FGpWOnNvthbec/swYAH9TXt+a8X/Zw/Z3h+BOkXnn6o2s6zfbRPdbNiKo6Ig64yc5PX2r2bOK45zc3dnuUKXsqagKWpN1Jnmmk1mdFhSaaWpCaTHegYE880hcimk0lAysDUYalB496jBoAlBpwORUQanBjQBJupGemZprGgBsr8Vm3lzsHWrc78GsO/kPNAHz3+0N8drTwvrJ8LR+Q072pluJJQG2huAo9DjnP0r8/tT8b2tp4wuJdKndI0I/d59OOMda9e/bW+F3i61+Keo+IrSwu77R75UeO7to2kWHChSj4Hy4IOPYivj6SaXTJp2lDLOSRyCCK+ywOIo0KEI0laW7l+n6HiVoSqVG5P5HpGo/Fe60fxKb+OZQzru+RQQx6HIrhPFHj291rVReIm1SSXYLgsT1rlnu7i7uNuDI5Pyqq5Jr2zwN4Hkg0ayvNf0421ofnZJgRuHY4+lZRq18fJwg7K9xOEKCTauS/DLxd5zNb3eyXzCARNyBnoea9K8ayaNp0Gl3CHyD5imSaNhgnIBPX0J4/wD114V8Tb+w0PxZHPocu2JohuiGRtPp/XPvWBrnj661fTBazSgr1DMfnH5da61mEKCcJq849SfYue2zPseH4jaRDpkNtDOjsikKTjJY+uM/hXPar8WNKvr20tEnWNw7JIgPb1Br42PivVBEYUu5FjI28HnFLp2sXUD+YJCZB/EetdK4mrSdraPcn6jFan0R8R9G0HxVrkuoyXbi2jU4VSDl8E9MDril8A/F+Pwxb/2baNtjgl3R71+bPr35rF/Z9k0LxFqU9r4ijuryNQJPJhIXec/dZuoB5GRyK7fxf8FrHT9Tm8Q6dbw6baRqu2zWYyDdt6sZD3I7dz0HAq8K8SpPF4aHuvd9CKnJ/Dm9T0T/AIW6uvQp5QZ5uArxjDj04Hoa9h8PeNdd0fQoL+Nm+1NxJHnOQMDOe349OK+OPBvxesvDWo820S3CMckkjB6c/wD669Vtv2jbeeOGLe0aAksqYC54OBz6+1fUUcfQxEFGq0+h5lbDWd4o+oNC+PyfZt+qRTRB+VDoefb3rzK/fxX/AMJjca7ptlOdMuZC6RnoqnsfQ8dK6/8AZv1ey+Imja6t9H5ttbzxSQbgCAWB3gH8FP4mu2+LXjC48HyaFYWemsdO1CQxvclQVUAZAHuf8a/JswwtSGJVOEtE9H3NacoRUrrUofDLxLqviZLm3v8ATrq1SNtjtMCVYY6K2MV6D4bsdKiWeOwtLe0jZ8EKgUuehY4rU8J6hb3ejxo+Iw8YKp6VyWvPqljeS6pBNFHb2eASDyRjPIr0XRpwSlJXPN55t2i7Enh39n7SLDxtqfiG5u7u71G8IcbpisUKAABFUcH1yc1a+J1qNB0GcRqjRMNobrj0FWNE+KFlcWTXUs6OxwfvAAf4VwXxE+LtleMtnG8cjbg4xjjnv6U5RoUab5LJlwVSrJOWqPI7XSfF8ss1zb4MQJKqAWIrh/Gvx+1jwhfRaPdh5tQk/wBWsQ4I6ZJJ4FfUPwh8S2jRzJeSQy7G2EggjHrXlv7VXwr0LW7yx8X6RHHHf2GVuUBCrLFknPsVPP0J9K4JU5Kn7S+nU76c4ufI46mz8L/E+seB9KtdfivCZ7hBJcW8nKSr1247exFfamm3gvrG3uQComjWQKe2Rmvzz+EMesfG3VdO0rSQw022dHvbocJHEDz+J5AFfobaoIoUReFUAD6CvKbu32PpMLFqF2XAc0uaiBxTi3FI7RxNNJpM0ZzQAUE5oNMLUANzRmkzTSaAKuaYDijPvTQaAJM0uajzTs0APzTGNGajY0AQTtwaxb84BrYuDwaxNQ5U0MDmNSYHdnBFfE37X/wi8Jaj4n0q+URaXqN5HI1wIkwJQuMNgcZ5PPtX2pqRwTXw7+1Xr/8AwlPiqZbV0WPQVaEOnLO5AL/gOB7H616OXRc8Qla61ujjxTSp72Z5Ronwp03wrMdQs42nlVSoklO7t2HTmpb34kxG0uLHVAoQpiPemNnHb+Vec6J8V9R0uZg1wI2I2iR1B49MHjuffmsDx94kk8X3W6CU7cfOVAH6ivpa+MpwptYdJJ9DyYUpuXvv5nGeMruG51+4a2k8yHPDLwCe+KxAuTVhUiJIOVYGtnxP4H1rwobIarp8lmt7AtzbO2Cs0bchlYEg/wBK+Ul7zb7nrx91WMhYxjmrVvb73XaepwDUltol3foqxKS3ACgZya24PBV1pum3N3eN5TxfdiH3ge2a1hGTeiIlJJbnZ2Fy/wAO5LKdVAjmiCySoOrdefzNdVrvx5F7oE8E0jOWj2Ju55wRnH415QPGhvNK+w3cayrjAYj5gfaufaDz5CzEqo+6GNe5/aVSjSdChL3X+Hc4lQUpc01qbng2xg1/XILVZPLnuZQgMh5JJr7L8OfsZXM0OmvJq8KNPIDJvjOFTAJIHUkdOcV8gfC++tNE8e6TqU0XnQWMwncEZGBxn8CQfwr7b1/9puBbnSLqzmzCsextpzt6dcfSvMouMXzSe3RHLjPaX5YI9wHwsvfgl4RM+i3f9oadG3mXK7QkgQfeYY4OB16cVS8T/GnTdYi0a1niT7BFMGM7/MHcKduPpkn8qd8JfjhJ8SNRisLaeN2XDEs22m/tEeBJfE2kMhtxZBSDDLBgbG6dhzzXQ6lO7nHY8eNOfMoy3Ob8a/FBtDtzc2V8DABlQhyAPTrXhvjb9p7W9Z8Para6DDPcygANc8lBjOcjuOTWv4O+Cl3rTlPEOvPLZpkLGpI3D3P517XZ/BfR7XwVBZWdrbRwhGiaZIgGcZ43EDLHpya8mdeo7yjsetGjSi0mfC2h/HvxLDb/AGWVGllB4ZHKj8uatXHjHW9Xjlnv7ryDIBnY5V2x0HXgV774v+A3hv4c2t5qerYtolQyeYxGAMZ/yOtfEt9fS39/LM0jhGY7RnoKhTU3odUYeVj2PwP8d9W8NXEtqslw0RPDFiTnp3NfXnwklXxf4S1DU/EcjXVrdQNAtrg7VRhhiT6kccdK+KPhD8PNV+Jerpp+jWD3t9GpkO0gLtHdicAelfUmj/EC68EaG/hq606S1ubYiO5icAFSMdfwrVzhGL5tzCdKbknFWR9W/sm+DdJ8G+BbiLT5TLNNOWk3ptZVGQg9+Oc+pr3yF+BXz3+zJ4obxdZahfxQPHZRhIEkZcB26kD6cV79C/A5rjbTd47HuUOb2a5ty6GzS55qJW4p4NI6B+aVTTc0hOaAFc80wmlJpuaAGk80maCaaDQBUzxTAaXdxTQaAH5p2ajzS7qAHZpjng0pNRyNQBWnbg1jX54Nas7daxtQfANJgc1qh618C/tVfC3XvBWuah4q0rzLvRL6ZppxHy0DtyQw/uk9DX3rqT5zXJazaw39vNb3MSTwSqUeORdysp6gitqFeeHlzwZjUpqorM/IefSE8QS+XYxySXRJZrdFLPjqSAM8da6Dw1ZaTpNu63iP9pXnDLjn0r9DfC3wZ8G+AdWudS0PQ4LK9nzmYZYqD1C5ztHsKwvip8DfDfxQtGF1D9gvxkrfWihZCf8Aa/vD611RxUFK7ic7w8nHRn526loD6jqFzcwWxMLncDgDjFWLWDVtcisrC7vLi5sbEFbaCaQssKk8hATxnA6V9ID9kbxVY3ptbfWNOl03dgTvvVwv+7jr+NYv7Q/hK4+Glz4XtbKzLaLa2H2dbxI/mM24szMR3JOfxreM6EqkUtbmbjUUG2cf4I8KDRpnLx7zJkYbqDjjH6fWui17wnYatotzucRygFdw+7uyev6/lXnq+Mb2yu45LsNGWUOm8EeYtZl94+vZ7tooHYeZ8pjHA5r14zoQg9TktNs4rULVNLv54DiSWJiuF6E5qW9spY7GOaSBjGxHz44Fdno/ws1nXNVlluEEbsd53kc5/wDrV1+peG3i0R7BoMxICjPtwAc15EaXPFyZ0udmeq/Cj9kXwt4u+H+m62PENzLe3dvvcWhQxox/hwRnjpzXgFld3fgLxjc6dqVpIy28zQyW8o6EHGcGvVf2PfFlx4W+Jtx4dku2Gn38bgQsflMq8ggdjgGuL+Nl7rXijx5q+uX8X7ozvDAUjAVYlYheR1471yJSU2pPQqpyOCa3PffCfihfC+lWHinTbBBbxENL9mUhtp4yfpXS/En9rhLrws32C2kv70KNkKZBz/tHHGPpWD+yFYJ4h8KfZ9RlWe3Z3QQy8jbnHSvdvGPwX0HQPDN/qOhaZbG48ony8DLnrgema6XCaptQV0eJzwVX3t0fC+gftE6pe6mEuVa03P8AMqOSv0GelfWfw6/aI0m7XT9OnkCLjlJOSfrXx/8AEH4W3ng77RrO2MtM5Yoo4jZj0H0zU/gD4Z+MfFNut5oenyyuFLiSRSqMR2DkgZ9q5YzUVdHdKkqrsj7f/ag0fR/in8JdQ0zSpANV2Rz28URDGRlYMF9881+ftp8DvF93OYotA1CRw20gW7cH8q+tvgF4H8axa6l/4ps2sra2GUWaTczt0GBngDrX0za8EY/Ss51U5e6kjsw+GahaTZ4p+xn8ENV+FumahqmtR/Zb3UFVFtj95EBzlvQn0r1/xT+z74e8d+JBrFzNc20sm37RHAQFmwMdxwcV1dj2rptNTIFc797c71CKXKa3hLQ7Dw1pNtp2m2yWlnAu1I4xgD3+tdRCeKx7FcAVrQHAFUaFxDUgNQIakBoAfuo3U3ikJoAcWpM5puaN2KAGk80maaTmkz70AVM8U0NTQ2aaGoAlzS7qjDUZ5oAkLVE7UpaonPU0AV5261i6gMg1sSnIrKvFyDSYHK6ivWubvl5NdbqKDB4rmL9OTSA565XrWfKOa17mPrWdNGeagaKDcmq11aQXsRiuIY54z1SVQw/I1dkTHWoWXk0DPN/iZqHgTS4Le28R6Vb6g6riO3jtRLJGvTIx90V8T/HPQ9P8K+L5D4X3nR541lhdvmK5HKnIyMHsa+j/AIt6Vcr8V22ziQ3Fuk0ce7BQKMEc/TNYesy24EFrPbw3CXRIJlUENgnJzjp+fSvo8Ll8qlKNSEt+h5lWslJqS2PH/h74quJbSM3EroCu2Tp82K9H1XWdGubVYYJ2uGKZ3uGVtx5IIzjIrE8deFft9nbRaJbRwNDjdJbrtCggEfhWJZ/D28062B1K6khnk5RWIB2+tdrUqa9nJapHInrodJ+zR8PpPFvxQudbMnk2mlsZQAOWY5Cgfqfwr0DX/stqk/hbWbLyrxT5ayMBtcE/K4Poa6P9mK0tNLh161hX99vidnPORgjH5g/nV/46eCpPFer6VHZHZfSwupdeoCsCp/NjXzk5P2vKzrnBex5jxL4VaveeCvH13o9verBZsrMpckDORx+tfWGm+Kb6WyjF7fKS0W1yp4Cg4yenPPXFfBvxH8P+IvBniTyrjc06NkTKvJFez+DJ9M0P4cR+IvGOtX8V5IWa30qG4VDOg4XjG4A89+layqST93Y4oUY1Frueta9/wjeoaRPNfwxXUUDb5Yn5RlU5xj8K734a+K9C8X+G4Lnw+qwWUY8v7MIwhhP93aOlfHngqW58bx3qTXE1vYJllhLkswJ6E9/yr6Z/Zx8EyeHvDl3eSZQX0oMcRHRVyAfxzXntcrcWduHbvpsewW6YIrWtEyRgVUtoK2bK35FJHomjYREEV1GmxdKyLC25BNdHYxbQOKoDWtBjFaUVULYYFXozVAWUNSA55qBTTw1AEuaQmmbqTdQA4tSFuKaTxTS1ACFqM03NNoApqcZpM8U0HikBoAkDUob3qPdRnigCTPFRMeKUn9ajY0ARSGs66GQa0HPWqc65FJgc7qCZzXO3sOc11t5DkGsS6tSc8UgOUngPpVCW26mumns854qpJp5POKVgOYltznpVSSH24rpbiy2jpWbPbYzxUjueC/G/4F3nxF1Gz1bR9Sj0/UoI/KZbgHy3XOQcjJBGa851b9lnxZHoq3Fv4mgvNUhBZbQxssfrhXJ6/UAV9ZSw9eKrSRba7KeLr0oqMJWRjKjCb5mj4U0TxXe+Bbq503XbZ7W+UkSRSrtK5649q6Zrmy8QaRLdGQySKowZG2hMY+7nk96+nfF3w58OeOISmtaTb3rbdizMuJUHs45FeRN+ymtpq4Nh4inh0bdk2sse6QL3AbIH44r3KWZ0qkeXEK3p1OKeFnF3hqaX7M1q40fWb6RCvnXIjViOoUdvxNdh4+1STRNe0m7SMMs0bw7scqQQf612OlaNa6PYQ2dnCsFvCoVEQY/yazPGfhQeK9I+zJN9mu4m8yCfGdre47gjivnude05lsdk6TlScOp478XfDH/CYwQ3pQeYDtyOCeOo/SvFdF8AQp4hNtrU7yxhNylnwNvYDNe8f8IJ47u737BNEohRuLxXURkevXd+GK9G8M/BTRrR0u9UiXVb8KF3yj5FHoF7/jWsqqta55sMLProec/B34aRX2rxSJFI+lxjLyMPlOOiivpyxsFgiWOJAiKMKqjAAqLTdPitIUhgiSGJRhURcAD2ArobK1GOlcm7uenTgqasiO2tMHpW1ZW3Tii2s8444rXtbYAjiqNSxZW+MVt2ybcVTtocYrRhXGKaAuQjGKtJVaMdKsIaYEwOacGqIHinZoAfmjNMzmjNADi1NLUhNJmgAzSZpM0m7HagDPDcUgamZoBoAlzR1pg+tLnmgBSTSE0hPakzQA1zmq8i1OTUbDNAGdPFntWfPbA9q2ZEyKryRA1IGBLZA9qrSWftW9JBmq0kHWgDmrmzyDxWNd2oTPFdlPbbh71j3thuPX9KQHIzQ4PQVTnhJPp2rfubIqT7e1UJLSpAxmhPpTfIPpWobXB5pUtcnpmgdzKMFAirVeyxzmovsu2gLlaGE8fyrTtoOR2qOGIA9K0rZMkfLQIt2Vtkjit+0tgMcVRsY8AZWty3QYHFWBYt4fatK3hHHFVYhgDArRgHHSgCzAmKuRiq8dWUqgJ4zxUymoU7VKpoAkBpQeKjBpc0ASbqCeOKYDgUm6gB2cUmeaaWpM0ALmgmkpMZ7GgDMBpd3tRRQAoal3YFFFABu/Ck3CiigBpNMJoooAjbFRMKKKkCF1GKrSJRRQBVlSqNxECDRRQBlXFpk9Kzp7HriiigCo1rjtTo7aiikAktvgdKqmDJoooYEkVv3xWnY2xLgkUUUAbdvABjI5rVt4sAUUUwL0SfMvar0QAoooAtRmp1NFFUBMrU8MPWiigB27ijfRRQAbqN2aKKADNGaKKADNJ+NFFAH//Z)

LEFT: This Shapeways multi-color sandstone model of DNA would be great but which printer was it made on and is this machine affordable? RIGHT: Model of an HIV protein by biologicmodels.

Which printers are able to produce models with 2+ filament colors NOT separated horizontally by layer? Layering does not make sense for us since it’s hardly ever feasible in biological models. I have found a couple of interesting dual or even triple extrusion pictures (Felix3, Protos X400, CubeX Trio 1, 2). Now, I’m wondering what Hubbers would recommend and what experiences you have?

Ultimaker2 seems to have the option for a 2nd extruder and is well liked here. On the other hand, CubeX has 3 extruders already onboard but scores a low 6.2 on 3DHubs. FlashForge Creater Pro (dual) looks promising.

For a full color range one probably has to change printing method to powder (CubeJet not yet available and company doesn’t reply, X1 $12000 but company email bounces) or paper (Iris available but €13000 and a huge machine). Are there any other full color printers out there?

What would you recommend to generate multi-color science models for teaching? Would be great to hear from you.

All the best

  • created

    Oct '15
  • last reply

    Oct '15
  • 14

    replies

  • 4.4k

    views

  • 9

    users

A cursory search on various ebay sites (.com, .co.uk, .de) did not return any offers. Mostly CTC, Prusa, and 2 ProJets 660 but on the US site. I’m getting the impression the 3DPandoras is too new and rare to crop up on 2nd hand platforms.

Where would you look for used printers?